LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

B.Sc. DEGREE EXAMINATION - CHEMISTRY

SECOND SEMESTER - APRIL 2023

UCH 2502 – CHEMICAL BONDING AND MAIN GROUP ELEMENTS

Date: 03-05-2023	Dept. No.	Max. : 100 Marks
Time: 01:00 PM - 04:00 PM	I	

Part-A

Answer ALL questions.

 $(10 \times 2 = 20)$

- 1. Write Born-Lande equation and mention the terms involved in it.
- 2. Define solvation energy.
- 3. Mention the criteria for selecting a unit cell.
- 4. Why are F-centers coloured?
- 5. Comment on the stability of clathrates.
- 6. Mention the conditions for the formation of hydrogen bond.
- 7. Why are alkali metals generally kept in kerosene?
- 8. Draw the structure of beryllium chloride in the gaseous and solid states.
- 9. How are nitrides classified?
- 10. Draw the structure of sodium nitroprusside.

Part-B

Answer any EIGHT questions.

 $(8 \times 5 = 40)$

- 11. Explain the properties of ionic compounds.
- 12. Illustrate the Fajans' rule and covalent character in ionic compounds.
- 13. Write the differences between crystalline and amorphous solids.
- 14. Sketch the following types of crystal lattice.
 - (i) simple cubic (ii) fcc
- (iii) bcc.
- 15. What are the consequences of hydrogen bonding on the properties of compounds?
- 16. Define hydrates and clathrates. How are they formed? Give examples.
- 17. Illustrate the extraction of beryllium from its principal ore.
- 18. Discuss the anomalous behavior of beryllium.
- 19. Explain the oxoacids of phosphorus.
- 20. Explain the preparation and properties of diborane.
- 21. Write a short note on three dimensional silicates.
- 22. Draw the structure of zinc blende and wurtzite.

Part-C

Answer any FOUR questions.

 $(4\times10=40)$

- 23a. Explain the factors that affect the formation of an ionic compound.
 - b. Construct Born-Haber cycle for the formation of a salt, MX, and calculate the lattice energy of MX from the data given below.

Heat of formation of MX = -550 kJ mol^{-1}

Heat of sublimation of $M = +80 \text{ kJ mol}^{-1}$

Heat of dissociation of $X_2 = +155 \text{ kJ mol}^{-1}$

Ionization energy of M = $+374 \text{ kJ mol}^{-1}$

Electron affinity of X = -343 kJ mol^{-1} (5+5)

24a. Illustrate the crystal structure of sodium chloride.

b. Explain salient features of Schottky and Frenkel defects with examples. (5+5)

25a.	5a. Identify the cation which will have greater polarizing power. Justify your answer.					
	i) Na^+ or Mg^{2+} ii) Cu^{2+} or Ca^{2+} iii) Pb^{2+} or Pb^{4+}					
	Write a short note on catenation.	(6+4)				
	Write a note on London dispersive forces and liquefaction of gases.					
	Write a note on ion dipole-dipole interaction.	(5+5)				
	Discuss the biological importance of alkali metals.					
	How does the basic strength of hydroxides of alkali metals vary down a group?	(5+5)				
	Explain the extraction of boron.					
		(6+4)				
•	210.1. 010 01000010 01 111.0 2, 111.0 3, 1121.0 0 2 0100 111.0	(0 .)				
\$\$\$\$\$\$						
	φφφφφφ					